1,250 research outputs found

    Galactic fountains and outflows in star forming dwarf galaxies: ISM expulsion and chemical enrichment

    Full text link
    We investigated the impact of supernova feedback in gas-rich dwarf galaxies experiencing a low-to-moderate star formation rate, typical of relatively quiescent phases between starbursts. We calculated the long term evolution of the ISM and the metal-rich SN ejecta using 3D hydrodynamic simulations, in which the feedback energy is deposited by SNeII exploding in distinct OB associations. We found that a circulation flow similar to galactic fountains is generally established, with some ISM lifted at heights of one to few kpc above the galactic plane. This gas forms an extra-planar layer, which falls back to the plane in about 10810^8 yr, once the star formation stops. Very little or no ISM is expelled outside the galaxy system for the considered SFRs, even though in the most powerful model the SN energy is comparable to the gas binding energy. The metal-rich SN ejecta is instead more vulnerable to the feedback and we found that a significant fraction (25-80\%) is vented in the intergalactic medium, even for low SN rate (7×1057\times 10^{-5} - 7×1047\times 10^{-4} yr1^{-1}). About half of the metals retained by the galaxy are located far (z>z > 500 pc) from the galactic plane. Moreover, our models indicate that the circulation of the metal-rich gas out from and back to the galactic disk is not able to erase the chemical gradients imprinted by the (centrally concentrated) SN explosions.Comment: 19 pages, MNRAS accepte

    X-ray Isophotes in a Rapidly Rotating Elliptical Galaxy: Evidence of Inflowing Gas

    Full text link
    We describe two-dimensional gasdynamical computations of the X-ray emitting gas in the rotating elliptical galaxy NGC 4649 that indicate an inflow of about one solar mass per year at every radius. Such a large instantaneous inflow cannot have persisted over a Hubble time. The central constant-entropy temperature peak recently observed in the innermost 150 parsecs is explained by compressive heating as gas flows toward the central massive black hole. Since the cooling time of this gas is only a few million years, NGC 4649 provides the most acutely concentrated known example of the cooling flow problem in which the time-integrated apparent mass that has flowed into the galactic core exceeds the total mass observed there. This paradox can be resolved by intermittent outflows of energy or mass driven by accretion energy released near the black hole. Inflowing gas is also required at intermediate kpc radii to explain the ellipticity of X-ray isophotes due to spin-up by mass ejected by stars that rotate with the galaxy and to explain local density and temperature profiles. We provide evidence that many luminous elliptical galaxies undergo similar inflow spin-up. A small turbulent viscosity is required in NGC 4649 to avoid forming large X-ray luminous disks that are not observed, but the turbulent pressure is small and does not interfere with mass determinations that assume hydrostatic equilibrium.Comment: 21 pages, 9 figures, accepted for publication by Ap

    Time-dependent Circulation Flows: Iron Enrichment in Cooling Flows with Heated Return Flows

    Get PDF
    We describe a new type of dynamical model for hot gas in galaxy groups and clusters in which gas moves simultaneously in both radial directions. Circulation flows are consistent with (1) the failure to observe cooling gas in X-ray spectra, (2) multiphase gas observed near the centers of these flows and (3) the accumulation of iron in the hot gas from Type Ia supernovae in the central galaxy. Dense inflowing gas cools, producing a positive central temperature gradient, as in normal cooling flows. Bubbles of hot, buoyant gas flow outward. Circulation flows eventually cool catastrophically if the outward flowing gas transports mass but no heat; to maintain the circulation both mass and energy must be supplied to the inflowing gas over a large volume, extending to the cooling radius. The rapid radial recirculation of gas produces a flat central core in the gas iron abundance, similar to many observations. We believe the circulation flows described here are the first gasdynamic, long-term evolutionary models that are in good agreement with all essential features observed in the hot gas: little or no gas cools as required by XMM spectra, the gas temperature increases outward near the center, and the gaseous iron abundance is about solar near the center and decreases outward.Comment: 17 pages (emulateapj5) with 6 figures; accepted by The Astrophysical Journa

    Star formation feedback and metal enrichment by SN Ia and SN II in dwarf spheroidal galaxies: the case of Draco

    Full text link
    We present 3D hydrodynamical simulations aimed to study the dynamical and chemical evolution of the interstellar medium in dwarf spheroidal galaxies. This evolution is driven by the explosions of Type II and Type Ia supernovae, whose different contribution is explicity taken into account in our models. We compare our results with detailed observations of the Draco galaxy. We assume star formation histories consisting of a number of instantaneous burst separated by quiescent periods. Because of the large effectiveness of the radiative losses and the extended dark matter halo, no galactic wind develops, despite the total energy released by the supernovae is much larger than the binding energy of the gas. This explains why the galaxy is able to form stars for a long period (> 3 Gyr), consistently with observations. In this picture, the end of the star formation and gas removal must result from external mechanisms, such as ram pressure and/or tidal interaction with the Galaxy. The metallicity distributions of the stars found in our models agree very well with the observed one. We find a mean value =-1.65 with a spread of ~1.5 dex. The chemical properties of the stars derive by the different temporal evolution between Type Ia and Type II supernova rate, and by the different mixing of the metals produced by the two types of SNe. We reproduce successfully the observed [O/Fe]-[Fe/H] diagram. However, our interpretation of this diagram differs from that generally adopted by previous chemical models. In fact, we find that the chemical properties of the stars derive, besides the different temporal evolution of the SNe II and SNe Ia rates, from the spatial inhomogeneous chemical enrichment due to the different dynamical behaviour between the remnants of the two types of supernovae.Comment: 20 pages, 14 figures (1 added), MNRAS accepted, Minor changes following referee repor

    Controle de plantas daninhas em cultivos orgânicos de soja por meio de descarga elétrica

    Get PDF
    Dois experimentos foram instalados em semeadura direta, em área de cultivo orgânico de soja, no município de São Miguel do Iguaçu, Paraná (PR), com o objetivo de avaliar o controle de plantas daninhas na cultura da soja (BRS 232) por meio de descarga elétrica. O delineamento experimental foi blocos casualizados, com quatro repetições. No experimento 1, fixou-se a voltagem de 4400V e,no experimento 2, de 6800V. Em ambos os experimentos,os tratamentos consistiram das variações de rotação do motor do trator (i) 2200rpm (rotações por minutos); (ii) 2000rpm;(iii)1600rpm e as testemunhas(iv) capinada e (v) sem capina. O equipamento utilizado para aplicação dos tratamentos foi o Eletroherb (Sayyou do Brasil). As plantas daninhas existentes na área experimental foram o amendoim-bravo (Euphorbia heterophylla), a corda de-viola (Ipomoea spp.), a guanxuma (Sida spp.), o capim-marmelada(Brachiaria plantaginea) e o capim-colchão (Digitaria spp.). O emprego de descarga elétrica é eficiente no controle das plantas daninhas da cultura da soja. A rotação 2200rpm proporcionou o melhor controle e, consequentemente, a maior produtividade da soja

    On the evolution of cooling cores in X-ray galaxy clusters

    Full text link
    (Abridged) To define a framework for the formation and evolution of the cooling cores in X-ray galaxy clusters, we study how the physical properties change as function of the cosmic time in the inner regions of a 4 keV and 8 keV galaxy cluster under the action of radiative cooling and gravity only. The cooling radius, R_cool, defined as the radius at which the cooling time equals the Universe age at given redshift, evolves from ~0.01 R200 at z>2, where the structures begin their evolution, to ~0.05 R200 at z=0. The values measured at 0.01 R200 show an increase of about 15-20 per cent per Gyr in the gas density and surface brightness and a decrease with a mean rate of 10 per cent per Gyr in the gas temperature. The emission-weighted temperature diminishes by about 25 per cent and the bolometric X-ray luminosity rises by a factor ~2 after 10 Gyrs when all the cluster emission is considered in the computation. On the contrary, when the core region within 0.15 R500 is excluded, the gas temperature value does not change and the X-ray luminosity varies by 10-20 per cent only. The cooling time and gas entropy radial profiles are well represented by power-law functions. The behaviour of the inner slopes of the gas temperature and density profiles are the most sensitive and unambiguous tracers of an evolving cooling core. Their values after 10 Gyrs of radiative losses, T_gas ~ r^0.4 and n_gas ~ r^(-1.2) for the hot (cool) object, are remarkably in agreement with the observational constraints available for nearby X-ray luminous cooling core clusters. Because our simulations do not consider any AGN heating, they imply that the feedback process does not greatly alter the gas density and temperature profiles as generated by radiative cooling alone.Comment: 8 pages. MNRAS in pres

    Urban animals – domestic, stray and wild: notes from a bear repopulation project in the alps

    Get PDF
    This piece explores “domesticity” as a social territory defined by its relationship with the conceptual and ecological space of “the wild,” and asks whether these spaces stand in opposition to each other or more subtle relations of co-implication are at play. As we look into the domestic and the wild, a conceptual map of notions emerges, including the public, the common, the civilized, and the barbarian. The paper suggests the domestic and the wild constitute two semiotic-ecological domains constantly stretching into each other without any stable or even clear boundary line, and it elaborates on a series of corollaries for studying non-human animals in urban contexts. As an illustrative case study, we follow the story of Daniza, a wild brown bear introduced in the Brenta Natural Park on the Italian Alps in the 2000s. Declared a “dangerous animal,” Daniza was accidentally, and controversially, killed by the public authorities in 2014.info:eu-repo/semantics/acceptedVersio

    Galactic Outflows and the pollution of the Galactic Environment by Supernovae

    Full text link
    We here explore the effects of the SN explosions into the environment of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D nonequilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk.Comment: 10 pages, 5 figures; paper of invited talk for the Procs. of the 2007 WISER Workshop (World Space Environment Forum), Alexandria, Egypt, October 2007, Spa. Sci. Rev

    Atmospheres of retail and the asceticism of civilized consumption

    Get PDF
    Abstract. During recent decades, consumption-oriented spaces of comfort and hospitality have proliferated – including, for instance, lounge shopping malls, food court plazas, spas, entertainment retail, visitor centres, and the development of ever larger pedestrian precincts. In this article we explore shopping malls as capitalist "domes" in Sloterdijk's sense. We observe atmospheric production, atmospheric management and atmospheric culture (which we propose to call atmoculture) inside such domes. Processes of retailization and mallification – whereby shopping malls and retail spaces absorb increasing economic and societal energies – can be regarded as correlative to the rise of an atmoculture of civilized consumption. Such atmoculture is visible for instance in stress-avoidance strategies and the production of a pleasurable experience in consumption-oriented public zones. The design of contemporary retail spaces seems to pivot around specific atmospheric strategies developed to promote and sustain civilized consumption. In this piece, we describe four different strategies of atmospheric production, identifying their possible shortcomings and failings. Finally, we advance the hypothesis that the atmospheric production of retail can also be analyzed with reference to Sloterdijk's theorization of asceticism as self-disciplination.</p
    corecore